Functional Decomposition of a Class of Wild Polynomials
نویسندگان
چکیده
No general algorithm is known for the functional decomposition of wild polynomials over a finite field. However partial solutions exist. In particular, a fast functional decomposition algorithm for linearised polynomials has been developed using factoring methods in skew-polynomial rings. This algorithm is extended to a related class of wild polynomials, which are sub-linearised polynomials.
منابع مشابه
Solving Differential Equations by Using a Combination of the First Kind Chebyshev Polynomials and Adomian Decomposition Method
In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method
متن کاملFactoring in Skew-Polynomial Rings over Finite Fields
Efficient algorithms are presented for factoring polynomials in the skew-polynomial ring F[x; σ], a non-commutative generalization of the usual ring of polynomials F[x], where F is a finite field and σ: F → F is an automorphism (iterated Frobenius map). Applications include fast functional decomposition algorithms for a class of polynomials in F[x] whose decompositions are “wild” and previously...
متن کاملSome Results on the Functional Decomposition of Polynomials
If g and h are functions over some field, we can consider their composition f = g(h). The inverse problem is decomposition: given f , determine the existence of such functions g and h. In this thesis we consider functional decompositions of univariate and multivariate polynomials, and rational functions over a field F of characteristic p. In the polynomial case, “wild” behaviour occurs in both ...
متن کاملNumerical solution of a class of nonlinear two-dimensional integral equations using Bernoulli polynomials
In this study, the Bernoulli polynomials are used to obtain an approximate solution of a class of nonlinear two-dimensional integral equations. To this aim, the operational matrices of integration and the product for Bernoulli polynomials are derived and utilized to reduce the considered problem to a system of nonlinear algebraic equations. Some examples are presented to illustrate the efficien...
متن کاملA spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کامل